目录

C++ 笔记33动态内存

C++ 动态内存

C++ 程序中的内存分为两个部分:

  • **栈:**在函数内部声明的所有变量都将占用栈内存。
  • **堆:**这是程序中未使用的内存,在程序运行时可用于动态分配内存。

如果您不再需要动态分配的内存空间,可以使用 delete 运算符,删除之前由 new 运算符分配的内存。

malloc 和 free 成对出现

new 和 delete 运算符

下面是使用 new 运算符来为任意的数据类型动态分配内存的通用语法:

1
new data-type;
1
2
double* pvalue  = NULL; // 初始化为 null 的指针
pvalue  = new double;   // 为变量请求内存

如果自由存储区已被用完,可能无法成功分配内存。所以建议检查 new 运算符是否返回 NULL 指针,并采取以下适当的操作:

1
2
3
4
5
6
7
double* pvalue  = NULL;
if( !(pvalue  = new double ))
{
   cout << "Error: out of memory." <<endl;
   exit(1);
 
}

malloc() 函数在 C 语言中就出现了,在 C++ 中仍然存在,但建议尽量不要使用 malloc() 函数。new 与 malloc() 函数相比,其主要的优点是,new 不只是分配了内存,它还创建了对象。

1
delete pvalue;        // 释放 pvalue 所指向的内存

实例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
#include <iostream>
using namespace std;
 
int main ()
{
   double* pvalue  = NULL; // 初始化为 null 的指针
   pvalue  = new double;   // 为变量请求内存
 
   *pvalue = 29494.99;     // 在分配的地址存储值
   cout << "Value of pvalue : " << *pvalue << endl;
 
   delete pvalue;         // 释放内存
 
   return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

1
Value of pvalue : 29495

数组的动态内存分配

假设我们要为一个字符数组(一个有 20 个字符的字符串)分配内存,我们可以使用上面实例中的语法来为数组动态地分配内存,如下所示:

1
2
char* pvalue  = NULL;   // 初始化为 null 的指针
pvalue  = new char[20]; // 为变量请求内存

要删除我们刚才创建的数组,语句如下:

1
delete [] pvalue;        // 删除 pvalue 所指向的数组

下面是 new 操作符的通用语法,可以为多维数组分配内存,如下所示:

一维数组

1
2
3
4
5
// 动态分配,数组长度为 m
int *array=new int [m];
 
//释放内存
delete [] array;

二维数组

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
int **array
// 假定数组第一维长度为 m, 第二维长度为 n
// 动态分配空间
array = new int *[m];
for( int i=0; i<m; i++ )
{
    array[i] = new int [n]  ;
}
//释放
for( int i=0; i<m; i++ )
{
    delete [] array[i];
}
delete [] array;

二维数组实例测试:

实例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <iostream>
using namespace std;
 
int main()
{
    int **p;   
    int i,j;   //p[4][8] 
    //开始分配4行8列的二维数据   
    p = new int *[4];
    for(i=0;i<4;i++){
        p[i]=new int [8];
    }
 
    for(i=0; i<4; i++){
        for(j=0; j<8; j++){
            p[i][j] = j*i;
        }
    }   
    //打印数据   
    for(i=0; i<4; i++){
        for(j=0; j<8; j++)     
        {   
            if(j==0) cout<<endl;   
            cout<<p[i][j]<<"\t";   
        }
    }   
    //开始释放申请的堆   
    for(i=0; i<4; i++){
        delete [] p[i];   
    }
    delete [] p;   
    return 0;
}

三维数组

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
int ***array;
// 假定数组第一维为 m, 第二维为 n, 第三维为h
// 动态分配空间
array = new int **[m];
for( int i=0; i<m; i++ )
{
    array[i] = new int *[n];
    for( int j=0; j<n; j++ )
    {
        array[i][j] = new int [h];
    }
}
//释放
for( int i=0; i<m; i++ )
{
    for( int j=0; j<n; j++ )
    {
        delete[] array[i][j];
    }
    delete[] array[i];
}
delete[] array;

三维数组测试实例:

实例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <iostream>
using namespace std;
 
int main()
{   
    int i,j,k;   // p[2][3][4]
    
    int ***p;
    p = new int **[2]; 
    for(i=0; i<2; i++) 
    { 
        p[i]=new int *[3]; 
        for(j=0; j<3; j++) 
            p[i][j]=new int[4]; 
    }
    
    //输出 p[i][j][k] 三维数据
    for(i=0; i<2; i++)   
    {
        for(j=0; j<3; j++)   
        { 
            for(k=0;k<4;k++)
            { 
                p[i][j][k]=i+j+k;
                cout<<p[i][j][k]<<" ";
            }
            cout<<endl;
        }
        cout<<endl;
    }
    
    // 释放内存
    for(i=0; i<2; i++) 
    {
        for(j=0; j<3; j++) 
        {   
            delete [] p[i][j];   
        }   
    }       
    for(i=0; i<2; i++)   
    {       
        delete [] p[i];   
    }   
    delete [] p;  
    return 0;
}

对象的动态内存分配

对象与简单的数据类型没有什么不同。例如,请看下面的代码,我们将使用一个对象数组来理清这一概念:

实例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
#include <iostream>
using namespace std;
 
class Box
{
   public:
      Box() { 
         cout << "调用构造函数!" <<endl; 
      }
      ~Box() { 
         cout << "调用析构函数!" <<endl; 
      }
};
 
int main( )
{
   Box* myBoxArray = new Box[4];
 
   delete [] myBoxArray; // 删除数组
   return 0;
}

如果要为一个包含四个 Box 对象的数组分配内存,构造函数将被调用 4 次,同样地,当删除这些对象时,析构函数也将被调用相同的次数(4次)。

当上面的代码被编译和执行时,它会产生下列结果:

1
2
3
4
5
6
7
8
调用构造函数!
调用构造函数!
调用构造函数!
调用构造函数!
调用析构函数!
调用析构函数!
调用析构函数!
调用析构函数!

菜鸟官方笔记

delete 与 delete[] 区别:

  1. 针对简单类型

使用 new 分配后的不管是数组还是非数组形式内存空间用两种方式均可 如:

1
2
3
int *a = new int[10];   
delete a;   
delete [] a; 
  1. 针对类Class

两种方式体现出具体差异 当你通过下列方式分配一个类对象数组:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class A
{
    private:
        char *m_cBuffer;
        int m_nLen;
    public:
        A(){ m_cBuffer = new char[m_nLen]; }
        ~A() { delete [] m_cBuffer; }
};
A *a = new A[10];

// 仅释放了a指针指向的全部内存空间 但是只调用了a[0]对象的析构函数 剩下的从a[1]到a[9]这9个用户自行分配的m_cBuffer对应内存空间将不能释放 从而造成内存泄漏
delete a;

// 调用使用类对象的析构函数释放用户自己分配内存空间并且   释放了a指针指向的全部内存空间
delete [] a;

所以总结下就是,如果ptr代表一个用new申请的内存返回的内存空间地址,即所谓的指针,那么:

delete ptr – 代表用来释放内存,且只用来释放ptr指向的内存。

delete[] rg – 用来释放rg指向的内存,!!还逐一调用数组中每个对象的 destructor!!

对于像 int/char/long/int*/struct 等等简单数据类型,由于对象没有 destructor,所以用 delete 和 delete [] 是一样的!但是如果是C++ 对象数组就不同了!