目录

C++ 笔记38多线程

C++ 多线程

多线程是多任务处理的一种特殊形式,多任务处理允许让电脑同时运行两个或两个以上的程序。一般情况下,两种类型的多任务处理:基于进程和基于线程

  • 基于进程的多任务处理是程序的并发执行。
  • 基于线程的多任务处理是同一程序的片段的并发执行。

多线程程序包含可以同时运行的两个或多个部分。这样的程序中的每个部分称为一个线程,每个线程定义了一个单独的执行路径。

本教程假设您使用的是 Linux 操作系统,我们要使用 POSIX 编写多线程 C++ 程序。POSIX Threads 或 Pthreads 提供的 API 可在多种类 Unix POSIX 系统上可用,比如 FreeBSD、NetBSD、GNU/Linux、Mac OS X 和 Solaris。

创建线程

下面的程序,我们可以用它来创建一个 POSIX 线程:

1
2
#include <pthread.h>
pthread_create (thread, attr, start_routine, arg) 

在这里,pthread_create 创建一个新的线程,并让它可执行。下面是关于参数的说明:

参数 描述
thread 指向线程标识符指针。
attr 一个不透明的属性对象,可以被用来设置线程属性。您可以指定线程属性对象,也可以使用默认值 NULL。
start_routine 线程运行函数起始地址,一旦线程被创建就会执行。
arg 运行函数的参数。它必须通过把引用作为指针强制转换为 void 类型进行传递。如果没有传递参数,则使用 NULL。

创建线程成功时,函数返回 0,若返回值不为 0 则说明创建线程失败。

终止线程

使用下面的程序,我们可以用它来终止一个 POSIX 线程:

1
2
#include <pthread.h>
pthread_exit (status) 

在这里,pthread_exit 用于显式地退出一个线程。通常情况下,pthread_exit() 函数是在线程完成工作后无需继续存在时被调用。

如果 main() 是在它所创建的线程之前结束,并通过 pthread_exit() 退出,那么其他线程将继续执行。否则,它们将在 main() 结束时自动被终止。

实例

以下简单的实例代码使用 pthread_create() 函数创建了 5 个线程,每个线程输出"Hello Runoob!":

实例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <iostream>
// 必须的头文件
#include <pthread.h>
 
using namespace std;
 
#define NUM_THREADS 5
 
// 线程的运行函数
void* say_hello(void* args)
{
    cout << "Hello Runoob!" << endl;
    return 0;
}
 
int main()
{
    // 定义线程的 id 变量,多个变量使用数组
    pthread_t tids[NUM_THREADS];
    for(int i = 0; i < NUM_THREADS; ++i)
    {
        //参数依次是:创建的线程id,线程参数,调用的函数,传入的函数参数
        int ret = pthread_create(&tids[i], NULL, say_hello, NULL);
        if (ret != 0)
        {
           cout << "pthread_create error: error_code=" << ret << endl;
        }
    }
    //等各个线程退出后,进程才结束,否则进程强制结束了,线程可能还没反应过来;
    pthread_exit(NULL);
}

使用 -lpthread 库编译下面的程序:

1
$ g++ test.cpp -lpthread -o test.o

现在,执行程序,将产生下列结果:

1
2
3
4
5
6
$ ./test.o
Hello Runoob
Hello Runoob
Hello Runoob
Hello Runoob
Hello Runoob

以下简单的实例代码使用 pthread_create() 函数创建了 5 个线程,并接收传入的参数。每个线程打印一个 “Hello Runoob!” 消息,并输出接收的参数,然后调用 pthread_exit() 终止线程。

实例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
//文件名:test.cpp
 
#include <iostream>
#include <cstdlib>
#include <pthread.h>
 
using namespace std;
 
#define NUM_THREADS     5
 
void *PrintHello(void *threadid)
{  
   // 对传入的参数进行强制类型转换,由无类型指针变为整形数指针,然后再读取
   int tid = *((int*)threadid);
   cout << "Hello Runoob! 线程 ID, " << tid << endl;
   pthread_exit(NULL);
}
 
int main ()
{
   pthread_t threads[NUM_THREADS];
   int indexes[NUM_THREADS];// 用数组来保存i的值
   int rc;
   int i;
   for( i=0; i < NUM_THREADS; i++ ){      
      cout << "main() : 创建线程, " << i << endl;
      indexes[i] = i; //先保存i的值
      // 传入的时候必须强制转换为void* 类型,即无类型指针        
      rc = pthread_create(&threads[i], NULL, 
                          PrintHello, (void *)&(indexes[i]));
      if (rc){
         cout << "Error:无法创建线程," << rc << endl;
         exit(-1);
      }
   }
   pthread_exit(NULL);
}

现在编译并执行程序,将产生下列结果:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
$ g++ test.cpp -lpthread -o test.o
$ ./test.o
main() : 创建线程, 0
main() : 创建线程, 1
Hello Runoob! 线程 ID, 0
main() : 创建线程, Hello Runoob! 线程 ID, 21

main() : 创建线程, 3
Hello Runoob! 线程 ID, 2
main() : 创建线程, 4
Hello Runoob! 线程 ID, 3
Hello Runoob! 线程 ID, 4

向线程传递参数

这个实例演示了如何通过结构传递多个参数。您可以在线程回调中传递任意的数据类型,因为它指向 void,如下面的实例所示:

实例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <iostream>
#include <cstdlib>
#include <pthread.h>
 
using namespace std;
 
#define NUM_THREADS     5
 
struct thread_data{
   int  thread_id;
   char *message;
};
 
void *PrintHello(void *threadarg)
{
   struct thread_data *my_data;
 
   my_data = (struct thread_data *) threadarg;
 
   cout << "Thread ID : " << my_data->thread_id ;
   cout << " Message : " << my_data->message << endl;
 
   pthread_exit(NULL);
}
 
int main ()
{
   pthread_t threads[NUM_THREADS];
   struct thread_data td[NUM_THREADS];
   int rc;
   int i;
 
   for( i=0; i < NUM_THREADS; i++ ){
      cout <<"main() : creating thread, " << i << endl;
      td[i].thread_id = i;
      td[i].message = (char*)"This is message";
      rc = pthread_create(&threads[i], NULL,
                          PrintHello, (void *)&td[i]);
      if (rc){
         cout << "Error:unable to create thread," << rc << endl;
         exit(-1);
      }
   }
   pthread_exit(NULL);
}

当上面的代码被编译和执行时,它会产生下列结果:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
$ g++ -Wno-write-strings test.cpp -lpthread -o test.o
$ ./test.o
main() : creating thread, 0
main() : creating thread, 1
Thread ID : 0 Message : This is message
main() : creating thread, Thread ID : 21
 Message : This is message
main() : creating thread, 3
Thread ID : 2 Message : This is message
main() : creating thread, 4
Thread ID : 3 Message : This is message
Thread ID : 4 Message : This is message

连接和分离线程

我们可以使用以下两个函数来连接或分离线程:

1
2
pthread_join (threadid, status) 
pthread_detach (threadid) 

pthread_join() 子程序阻碍调用程序,直到指定的 threadid 线程终止为止。当创建一个线程时,它的某个属性会定义它是否是可连接的(joinable)或可分离的(detached)。只有创建时定义为可连接的线程才可以被连接。如果线程创建时被定义为可分离的,则它永远也不能被连接。

这个实例演示了如何使用 pthread_join() 函数来等待线程的完成。

实例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <iostream>
#include <cstdlib>
#include <pthread.h>
#include <unistd.h>
 
using namespace std;
 
#define NUM_THREADS     5
 
void *wait(void *t)
{
   int i;
   long tid;
 
   tid = (long)t;
 
   sleep(1);
   cout << "Sleeping in thread " << endl;
   cout << "Thread with id : " << tid << "  ...exiting " << endl;
   pthread_exit(NULL);
}
 
int main ()
{
   int rc;
   int i;
   pthread_t threads[NUM_THREADS];
   pthread_attr_t attr;
   void *status;
 
   // 初始化并设置线程为可连接的(joinable)
   pthread_attr_init(&attr);
   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 
   for( i=0; i < NUM_THREADS; i++ ){
      cout << "main() : creating thread, " << i << endl;
      rc = pthread_create(&threads[i], NULL, wait, (void *)&i );
      if (rc){
         cout << "Error:unable to create thread," << rc << endl;
         exit(-1);
      }
   }
 
   // 删除属性,并等待其他线程
   pthread_attr_destroy(&attr);
   for( i=0; i < NUM_THREADS; i++ ){
      rc = pthread_join(threads[i], &status);
      if (rc){
         cout << "Error:unable to join," << rc << endl;
         exit(-1);
      }
      cout << "Main: completed thread id :" << i ;
      cout << "  exiting with status :" << status << endl;
   }
 
   cout << "Main: program exiting." << endl;
   pthread_exit(NULL);
}

当上面的代码被编译和执行时,它会产生下列结果:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Sleeping in thread 
Thread with id : 4  ...exiting 
Sleeping in thread 
Thread with id : 3  ...exiting 
Sleeping in thread 
Thread with id : 2  ...exiting 
Sleeping in thread 
Thread with id : 1  ...exiting 
Sleeping in thread 
Thread with id : 0  ...exiting 
Main: completed thread id :0  exiting with status :0
Main: completed thread id :1  exiting with status :0
Main: completed thread id :2  exiting with status :0
Main: completed thread id :3  exiting with status :0
Main: completed thread id :4  exiting with status :0
Main: program exiting.

更多实例参考:http://www.runoob.com/w3cnote/cpp-multithread-demo.html

菜鸟官方笔记

c++ 11 之后有了标准的线程库:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <iostream>

#include <thread>

std:🧵:id main_thread_id = std::this_thread::get_id();

void hello()  
{
    std::cout << "Hello Concurrent World\n";
    if (main_thread_id == std::this_thread::get_id())
        std::cout << "This is the main thread.\n";
    else
        std::cout << "This is not the main thread.\n";
}

void pause_thread(int n) {
    std::this_thread::sleep_for(std::chrono::seconds(n));
    std::cout << "pause of " << n << " seconds ended\n";
}

int main() {
    std::thread t(hello);
    std::cout << t.hardware_concurrency() << std::endl;//可以并发执行多少个(不准确)
    std::cout << "native_handle " << t.native_handle() << std::endl;//可以并发执行多少个(不准确)
    t.join();
    std::thread a(hello);
    a.detach();
    std::thread threads[5];                         // 默认构造线程

    std::cout << "Spawning 5 threads...\n";
    for (int i = 0; i < 5; ++i)
        threads[i] = std::thread(pause_thread, i + 1);   // move-assign threads
    std::cout << "Done spawning threads. Now waiting for them to join:\n";
    for (auto &thread : threads)
        thread.join();
    std::cout << "All threads joined!\n";
}

要注意内存泄露问题

如果设置为 PTHREAD_CREATE_JOINABLE,就继续用 pthread_join() 来等待和释放资源,否则会内存泄露。